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Abstract 

The rate for 9 + J/T+!J + L+.P is suprisingly large with about one event for every 

million @ decays. The reason for this is that there is a fragmentation contribution 

that is not suppressed by a factor of M$/M,. * In the fragmentation limit Mz + oo 

with Eg,/Mz fixed, the differential decay rate for .&’ + J/$ + L+t- factors into 

electromagnetic decay rates and universal fragmentation functions. The fragmentation 

functions for lepton fragmentation and photon fragmentation into J/$ are calculated 

to lowest order in Q. The fragmentation approximation to the rate is shown to match 

the full calculation for E+ greater than about 3M$. 

4# Operated by Universities Rereerch Association Inc. under contract with the United States Department of Energy 



Introduct ion 

Fragmentation is the decay of a high transverse momentum parton into a collinear 

hadron. The differential cross section for the inclusive production of such a hadron in e+e- 

annihilation factors into differential cross sections d6 for the production of large transverse 

momentum partons and fragmentation functions D(z) [l]. The fragmentation function gives 

the probability for the splitting of a parton into the hadron with momentum fraction z. 

These functions are independent of the subprocess that creates the fragmenting particle, 

and can be evolved to any scale via the Altarelli-Parisi evolution equations. 

It has recently been shown that it is possible to calculate the fragmentation functions 

for heavy quarkonium states using perturbative quantum chromodynamics (&CD) [Z]. Frag- 

mentation functions for several of these states have been calculated explicitly [2, 3, 4, 5, 61. 

In particular the paper of Braaten, Chueng and Yuan on charm quark fragmentation [3] is 

most relevant to the work presented here. Their analysis focuses on decays of the 2’ into 

hadrons showing that charmonium production is dominated by charm quark fragmentation. 

In an analagous manner it is shown here that decays of the 2’ into charmonium plus electro- 

magnetic particles (leptons and photons) are dominated by electromagnetic fragmentation. 

The process Z” + $J + e+/J-, which is of order o*, where o is the electromagnetic 

coupling constant, has a branching ratio of 7.5 x 10 -7. This is an order of magnitude larger 

than the order-o process Z” + $7 [7], which has a branching ratio of 5.2 x lo-*. That 

makes Z” + $J + .@e- the dominant $J production mechanism in electromagnetic Z” decays. 

The unexpectedly large rate can be explained by a fragmentation contribution which is not 

suppressed by a factor of M$/Mj!j [2]. In this paper, it is shown that in the fragmentation 

limit Mz + 00 with E,,,/Mz fixed, the rate for Z” + $J + e+!? factors into subprocess 

rates for electromagnetic decays and individual fragmentation functions . At leading order 

in (Y there is a contribution from the fragmentation function Dt,+ for a lepton to split into 

a $J, and a contribution from the fragmentation function D,.+, for a photon to split into a 

11. The fragmentation functions are calculated in a manner that is independent of the hard 

process that produces the fragmenting parton, and the fragmentation calculation is shown 

to match the full calculation for E+ greater than about 3M+. 
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The decay rate for Z” + 1c, + PP 

The decay rate for Z” + T,LJ + PC was calculated in a model-independent way 

in Ref. [8, 91 using the Feynman diagrams in figure la. The diagrams in figure lb also 

contribute to this process at the same order in the electromagnetic coupling o. Fortunately 

they can be neglected. 

In order to understand why only the diagrams of figure la need to be considered it is 

necessary to understand why the rate for Z” + $7 is smaller than the rate for Z” + @+C+P-. 

Naively one would expect I’(Z” + $7) to be larger than I’(Z’ + II, + C+e-) since the latter 

rate is suppressed by a power of CII compared to the former rate. However upon closer 

examination this expectation turns out to be untrue. To see why compare the diagrams 

that contribute to the decay rates I’(Z” + II, + PP) figure 1 and I’(Z” + $q) figure 2. 

It is important to note that the lepton propagator in the diagrams of figure 2 is always of 

order l/A@. In contrast there is a substantial region of phase space where both the photon 

propagator and the lepton propagator in the diagrams of figure la are of order l/A4,$. Thus 

these diagrams will be enhanced by a factor of Mi/M$, compared to the diagrams of figure 

2. The factor of Mi/M,$ is large enough to overwhelm the extra power of o making the 

diagrams of figure la more important than the diagrams of figure 2. The lepton propagator 

of the diagrams in figure 1 b is always of order l/M;, so these diagrams are suppressed by a 

factor of Q compared to the diagrams in figure 2, and may be neglected. 

The remaining diagrams that contribute to I’(Z” + $J + .!+e-) at the same order in 

(Y are obtained from the diagrams of figure 1 by replacing the photon propagator with a 

Z-boson. Then the boson propagator in the diagrams of figure la is always of order l/MS. 

Similarly the lepton propagator in the diagrams of figure lb is also always of order l/MS. 

Thus these diagrams are suppressed by a factor of (Y compared to the diagrams of figure 2 

and can be neglected. 

Keeping only the diagrams in figure la, and neglecting the lepton mass, the result of 
; 
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the calculation of I’( 2’ + 1c, + e+.!-) is 

r = 4&t r(.P -+ e+e-) izA dylFz~dw g(y, w, x) 

1 
!dY,W,)o = 5 

( 

(y - 2)* + W2 
y* - w* ) ( 

-2A 2”*-($-$l-y)) +2q l ) (1) 
y* - w* 

where X = M;/M;, y = 2P - Z/M; and w = 2(p+ -p-) . Z/M$. Here P, p-, p+, and 2 

are the 4momenta of the T,!J, P, P, and 2’. The parameter g+ can be determined from 

the electronic width lYe+e- of the $ to be 

(2) 

Using re+e- = 5.4 keV the photon-to+ coupling is g$, = 0.008. Integrating the function 

g(y, w, A) over w yields the full differential decay rate 

dr -= 
d&J 

r(zo+e+q 
8a2g; Mz 

K 

(y- i)*+l + ~ 3 -2y + x2 2 

Y Y 
i log E - 2YL , (3) - I 

where ye = dm. In the center of mass frame y = 2E+/Mz. Later on these results will 

be compared to the fragmentation calculation in the fragmentation limit Mz + 00 with 

E+/Mz fixed. In this limit Eq. (3) reduces to 

dr 
= Sa*g; 

r(zo --+ e+e-) cy - iy + 1 
zr$ MZ Y 

log f - 2y 1 . (4) 

The Fragmentation Contribution to 2’ Decay 

In reference [3] the general form of the fragmentation contribution for the production 

of a 1c( of energy E+ in 2’ decays is given as 

dr(” + +(E+) + X) = C / dz dp( 2’ + i( E+/z) + X, /.L”) Di+ti( 2, p”), 
i 

(5) 
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where the sum is over partons and z is the longitudinal momentum fraction of the 1c, relative 

to the fragmenting parton. All of the dependence on the $J energy J!.$ has been factored into 

the subprocess decay rate ^r and all of the dependence on the II, mass MJ, has been factored 

into the fragmentation function D;,+ (r, ~1~). A factorization scale p has to be introduced 

in order to maintain this factored form in all orders of perturbation theory. This general 

form was developed in the context of &CD, but it applies equally to QED, where the only 

partons are leptons and photons. This simplifies the general electromagnetic fragmentation 

contribution to 

-$(Z’ + $(E+) +X) = CL 
2 J J ‘dz dEc z 

dE (’ 
O 

0 
+ l-( EC) + X, p2) &+J,(~, p2) J(E+ - ~Ec) 

c 

+JdE~ -$ 2’ + r&) + X,CL~) &+dw2) &Q - 4L (6) 

where X are electromagnetic final states, and Et and ET are the lepton and photon energies. 

The factor of 2 accounts for the fragmentation contribution from both the e- and the F. 

Large logarithms of E+/p in the subprocess decay rate l! can be avoided by choosing ~1 on 

the order of E+. The large logarithms of order E+/M+ which then appear in the fragmenta- 

tion functions can be summed up by solving the Altarelli-Parisi evolution equation. In the 

electromagnetic case the evolution of the fragmentation functions is of order Q! and may be 

neglected. 

It is easy to count the order of cr for the leading order fragmentation contributions 

to Eq. (6). Th e subprocess rate for 2’ + e- + X ‘is of order 1, while the subprocess rate 

for 2’ + 7 + X is of order cr. The fragmentation function for a lepton to split into a $J will 

be shown to be of order Q’, while the fragmentation function for a photon to split into a $J 

will be shown to be of order cr. Therefore both fragmentation processes will contribute to 

Eq. (6) at leading order in cr. 

At lowest order in cr it is possible to simplify things. The energy distribution for the 
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subprocess 2’ + P (Et) + X at lowest order is 

di? 
- = f( 2’ + l+l-) S( Et - $), 
dEc 

(7) 

Furthermore the photon fragmentation function at lowest order can be written as 

4+dw2) = p7+J, J(z - 1) (8) 

where the function P,,+ is the probability for a photon to split into a ~,6, and z is the 

longitudinal momentum fraction of the $J relative to the 7. These simplifications reduce the 

fragmentation contribution to the energy distribution Eq. (6) at leading order in cy to: 

’ + t,b(E+) + t+l-) = 

-& f(2” + k’+t-) Dt+&p2) + $2’ + 7(E+) +l+l-,p’) Pr+. (9) 

The physical interpretation of the first term on the right hand side of Eq. (9) is that the 2’ 

decays into two leptons, with energies Mz/2 on a distance scale of order l/Mz. Subsequently 

one of the leptons decays into a collinear lepton and $J on a distance scale of order l/M+. 

The physical interpretation of the second term is that the 2’ decays into two leptons and 

a photon with energy E+ on a distance scale of order l/Mz, and the photon fragments into 

a $ on a distance scale of order l/M+. Note that at this order the only dependence on the 

factorization scale is in Df+ and in the subprocess rate for i” + +y + P.P. 

Given the general form of the fragmentation contribution at lowest order in o in Eq. 

(9), it is only necessary to calculate the fragmentation function Dt+,(z, cl”), the fragmenta- 

tion probability P-,+,, and the subprocess rate for the 2’ + y + PC-. 

Photon Fragmentation 

The fragmentation function D,,+((z, CL’) for a ph o on t to split into a $J can be calcu- 

lated in a manner that is independent of the process that produces the fragmenting photon. 

The Feynman diagram in figure 3a represent such a process at lowest order in CL An un- 

known vertex, represented by the circle, radiates a photon which fragments into a $. The 
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fragmentation probability P,+tl, can be isolated by dividing the cross section ~1, for the pro- 

duction of a 1c, with energy E$, by the cross section 00, for the production of a real photon 

of energy ET = E+, in the limit E+ > AI+ where fragmentation dominates. 

The general form of the photon production cross section 00 is 

00 = & J[dk~[dpat] (2n)4s4(pi, - k -pmt> x lAoI* (10) 

where pi,, is the sum of incoming 4-momenta, k is the photon 4-momentum, and pat is 

the sum of the remaining outgoing 4-momenta. Here [dk] = d3k/(16n3ko) is the Lorentz- 

invariant phase space for the photon and [dpat] is the Lorentz invariant phase space for the 

remaining outgoing particles, Flux denotes the incoming particle flux for which no explicit 

expression is needed since it will cancel the same factor when o1 is divided by ~0. The 

amplitude A0 for the process can be calculated from the Feynman diagram in figure 3b 

A0 = I”’ Q, (11) 

where I?’ is a vertex factor for the production of the photon, for which the explicit form is 

not needed. Squaring and summing over final spins gives 

c lAoI = -PT;. 

The general form of the y + 1c, cross section ~1 is 

ffl = & J[d~l(dpat] (2r)464(pi, - P - pout> c [All* 

(12) 

where P is the $4-momentum. Flux, pin, and p,, are the same as described after Eq. (10). 

The amplitude Al can be calculated from the Feynman diagram in figure 3a 

Al = - ‘ze rp (-g,J tr[fWl, (14) 

where c is the $ polarization vector, and l?‘ is the vertex factor for the production of a 

virtual photon with invariant mass A&. Squaring the amplitude and summing over final 

spins gives 

c IAll* = -4mg+ rv; (15) 
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The vertex factor l? in Eq. (14) only differs from the vertex factor in Eq. (11) in one respect, 

it is evaluated at the point k* = M$ instead of k* = 0. Aside from the vertex factor the 

II, mass enters the cross section ~1 in the phase space integral. The contribution to photon 

fragmentation will come from a region of phase space where E+ >> it& so that the II, mass 

can be neglected. Then the cross section ~1 can be written as 

=1 = 4?rg$a a(). 

The fragmentation probability P,+, can be read off from Eq.( 16): 

P y)$ = 47rg;lr. 

(16) 

(17) 

Evaluating this numerically gives a fragmentation probability of P,-,+ = 7 x 10e4. 

Photon Subprocess 

The energy distribution of the subprocess Z” + y + e+C- is calculated next. At 

this point it is necessary to decide what part of the Z” + $J + PP phase space is to be 

identified as photon fragmentation, and what part is interpreted as lepton fragmentation. 

In Eq. (9), the dependence on the factorization scale p cancels between D~,G and da/dE+. 

Thus by changing ,Y some of the lepton fragmentation contribution can be moved into the 

photon fragmentation term and vice versa. There is therefore no clear crossover from lepton 

fragmentation to photon fragmentation, which makes it necessary to make an arbitrary 

choice on the appropriate phase space cutoff. In this paper a cutoff on the invariant mass 

of the e - $J system, where e is the fragmenting lepton, is introduced. The contribution to 

the differential decay rate from negative lepton fragmentation is considered to come from 

the region of phase space where s < Jo *. Here s is the invariant mass of the P - II, system. 

Similarly the contribution from positive lepton fragmentation is considered to come from the 

region s’ < /J* where s’ is the invariant mass oft the P - 1c, system. The photon fragmentation 

contribution is interpreted as coming from the remaining region. In the calculation of the 
- 

photon subprocess the invariant-mass cutoffs translat;? into a limit on the phase space of the 

photon energy distribution. 
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The decay rate for Z” + y + PP is 

r(zo + r + e+q = &J [dkl[d~+j[d~-l (274464(z - k - P+ - p-1 f c IAl’, (18) 
z 

where k, p+, p- and 2 are the 4-momenta of the photon, P, f?, and 2’. The amplitude 

can be calculated from the diagrams in figure 4. Averaging over initial spins and summing 

over final spins reduces the square of the amplitude to 

kIAI 2 

* 3 
= 6fzew (c; +c;, (yy22ilwf2w2 (19) 

where y = 2k. Z/i@, and w = 2(p+ -p-). Z/M;, Cv = -1 +4sin20, and CA = 1, gW 

is the weak coupling constant, and 8, is the weak mixing angle. Note that aside from the 

normalization this is the same as the integrand of Eq. (1) in the limit M$ + 0. Simplifying 

the phase space integral, Eq. (18) reduces to 

r(zO + y + pe-) = Mz J’ dy J(y-2P”Mg) 
32(2~)~ 2,s/iq - +/ ‘&2/&f ; (20) 

where the limits on the invariant masses s and s’ translate into the limits on w. Integrating 

over w gives the photon energy distribution in the decay Z” + y + f?!-: 

dT 
dZ ’ + $E,) + t+tT--,/A*) = 

7 

2a r(zO + e+c-) cy - I)* + 1 - 7r MZ Y 

where y = 2E,/Mz. It is possible to simplify the expression for the energy distribution by 

taking the limit ~1 << Mz. In this limit Eq. (21) simplifies to 

dfi 
id2 

2a r(z" -+ e+q 
-t 

’ + y( Er) + e+C-, /-L*) = -;;- 
(y - I)* + i YM; Mz 

Y 
log- - p* Y * (22) 1 

The price that is paid for this simplification is that smooth threshold behavior at y = 2,u*/Mg 

is lost, and the differential decay rate becomes negative at sufficiently small values of y. Since 
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the fragmentation approximation breaks down in the threshold region anyway nothing is lost 

by making this simplification. 

Lepton Fragmentation 

The calculation of the fragmentation function Dt+,(z, p*) for a lepton to split into 

a $ parallels that of the photon fragmentation function. At leading order in (Y the process 

is symbolically represented by the diagram in figure 5a. The fragmentation probability is 

obtained by dividing ~1, the cross section for the production of 111 + P, by 00, the cross 

section for lepton production shown in the diagram of figure 5b, in the limit I& >> Mtl, 
. 

where fragmentation dominates. 

The general form of the cross section 00 for lepton production is 

(23) 

where q, pin, and p,, are the Pmomenta of the P, the incoming particles, and all other 

outgoing particles. Just as in the photon fragmentation calculation, [dq] and [dp,,t] are the 

Lorentz invariant phase space for the lepton and the remaining outgoing particles, and FEux 

represents the incoming particle flux (which will cancel with the same quantity in the cross 

section al). The square of the amplitude A0 calculated from the Feynman diagram in figure 

4b for /!- production, averaged over initial spins and summed over final spins, is 

c lAoI = tr[a ri?] (24 

where the Dirac matrix r is the matrix element for the production of a real lepton of 

momentum q for which the explicit form is not needed. The lepton mass me has been 

neglected since its 4-momentum q is taken to be large compared to me. 

The general form of the cross section 01 for the production of a lepton that subse- 

quently fragments into a +!J is 

& Jw~[dp-~~pout~ W4 d4(pin - P - p- - pmt) c IAll”, (25) 

where P is the 1c, 4-momentum, and everything else is as described after Eq. (23). The next 

step is to write the phase space in an iterated form, by introducing integrals over q = P+p- 
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the virtual lepton momentum, and s k q* the invariant mass of the $J 

the phase space expression becomes 

J [dPl[dP-l (2n)4s4h - P-p- -pmt) 

= J J $ [dql GW4J4hn - q - ~4 /[dP][dp-] (2n)464(q - 

. e- system. Then 

P-p-). (26) 

The contribution that corresponds to the fragmentation of the lepton in the diagram of figure 

5a comes from the region of phase space in which the $J - e- system has large momentum q 

compared to the $J mass and small invariant mass s = q* of order M$. In a frame in which 

the virtual lepton has a 4momentum q = (qo, 0, 0, qa), the longitudinal momentum fraction 

of the $J relative to the 11-P system is .Z = (PO + P3)/ (qo + q3) and its transverse momentum 

is pl = (PI, P2). E x p ressing the phase space in terms of these variables and integrating over 

the 4-momentum p- and over FL, the 2-body phase space reduces to [3] 

J [dP][dp-] (2r)4b4(q - P - p-) =&~‘diB(s-+). (27) 

The lepton mass has been set to zero. An upper limit on the integral over the invariant mass 

s is introduced by requiring s < p*, as discussed earlier. 

The calculation of the lepton framentation function is simplest to do in the axial 

gauge, because only the diagram of figure 5a, where the lepton is produced and splits into a 

collinear lepton and +, needs to be considered. Other diagrams where both the lepton and 

$J are produced separately from the vertex l? are suppressed in this gauge. If the calculation 

were done in some other gauge these diagrams would need to be considered, but the resulting 

expression could be manipulated into the form below using Ward identities. The 4-vector N 

associated with axial gauge is chosen to be N = (1, 0, 0, -1). The amplitude Al calculated 

in this gauge can be reduced to 

i 

Al = e*g+ Ed* f (qp-) Tadr) (28) 

where E is the ?+!J polarization vector, and l? is the Dirac matrix element for the production 
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of a virtual lepton with an invariant mass s on the order of the 1c, mass. The explicit form 

of I’ is not needed. 

The 1c, Pmomentum can be written as Pp = zqr+P~+(POq3-qOP3)/(qO+q3)N~. In 

the fragmentation region Pf = (0, FL, 0), and Poq3 - qoP3 are of order M$ while the virtual 

lepton momentum q is large compared to M+ so P N zq. Note that in the fragmentation 

region both s = q* and P . q are of order M $. Using these approximations and keeping only 

the leading order terms in d/M+ simplifies the square of the amplitude to 

C IAl I* = Xb*a*t$ (’ - ‘)* + ’ f _ 
z S 

!f) tr[a rrl. (29) 

Integrating over s up to the scale p2 the lepton fragmentation probability is obtained by 

dividing the cross section ~1 by the cross section 00. The differences between 01 and 00 are 

due to the fact that q* N MS in ~1, while q* = 0 in ~0. These differences are on the order of 

M$/E$ and in the fragmentation limit where EI/, >> M,,, they can be neglected. The result 

is 

!$=12ds b1die(s-~)2~2g~((i-j)2+1 f - T). 

from this it is possible to extract the lepton fragmentation function 

a+&, P2) = 2a2g; 
[ 

(z - 1)2 + 1 log ZP2 % --iZ+- % MZ P2 1 h2 -MS) (31) 
Note that the lepton fragmentation function is zero for values of z at which the production 

of a @ is kinematically forbidden. Taking the limit p > Mtl, simplifies Eq. (31) to 

DC-&P*) * 2a2g; (t - 1>* + 1 log z/J* _ z t 1 M; * (32) 

Just as in the calculation of the photon subprocess there is a price to be paid for this 

simplification. Eq. (32) does not have the correct threshold behavior at z = M$/p*, and 

it becomes negative for sufficiently small Z. The fragmentation function Eq. (32) is shown 

at the scales p = 3M+ and p = 6M+ in .figure 6. Note that there is a dramatic dependence 
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on the arbitrary factorization scale ~1. At the scale p = 6M+ the fragmentation function is 

much larger and peaks at a lower .z value than at the scale ,Q = 3M+. 

Comparison with full calculation 

The fragmentation contribution to the differential decay rate for Z” + 1c, + PP is 

given by inserting P7+, from Eq. (17), &/dE+ from Eq. (22), and Df,+ from Eq. (32) 

into the factorization formula Eq. (9): 

O + $(E+) + e+e-) = fkx*g; 
@” + 4’+t-) (y - l)* + 1 y*M; 

Mz 
Y 

log - 
Mi 

- 2y . (33) 1 
Note that the p-dependence cancels exactly. It is now possible to verify that this agrees with 

the full calculation in the fragmentation limit Eq. (4). 

Figure 7 compares the energy distribution of the full calculation Eq. (3) and the 

fragmentation calculation Eq. (33). It is clear from the graph that the fragmentation 

approximation breaks down for sufficiently small E+. For E+ = 3M+ the difference between 

the two curves is less than l%, while for E+ =’ 2M4 the difference is 5%. In practice there 

will often be a minimum energy below which detectors do not register particles. If this 

minimum energy is large enough then it is clear that the fragmentation approximation will 

give a result very close to the full calculation. 

Figure 8 shows the energy distribution in the fragmentation limit separated into the 

lepton fragmentation contribution, the first term on the right hand side of Eq. (9), and 

the photon fragmentation contribution, the last term on the right hand side of Eq. (9). 

The contributions are shown at ,Y = 3M+ and p = 6M+. The relative contribution of the 

two production mechanisms depends dramatically on the factorization scale p, though the 

total, photon fragmentation plus lepton fragmentation is independent of p. At the scale 

P = 3M+ the contribution of the lepton fragmentation mechanism is negligable compared 

to the contribution from the photon fragmentation mechanism, while at the scale ~1 = 6M$ 

both contributions are of the same order. 

The analysis carried out in this paper applies equally to other heavy quark anti- 

quark states such as the $J’ and the Y. Unfortunately the framentation contribution to 
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Y .production is an order of magnitude smaller than the fragmentation contribution to 111 

production. This is because the Y-photon coupling gt = 6 x 10B4 is so much smaller than 

the $-photon coupling g$ = 8 x 10m3, and the T mass is larger than the 1c, mass. 

Conclusion 

The process Z” + $J + e+e- has been studied in the fragmentation limit Mz + oo 

keeping E+/Mz fixed. In this limit the decay rate factors into the subprocess rates T(Z” + 

l+l-) and f(2” + y + !+e--), convoluted with the electromagnetic fragmentation functions 

Dt++ and &+. The fragmentation function DL++(z, ,Q) for a lepton to split into +, the 

fragmentation probability P7++ for a photon to split into $, and the subprocess l?(Z” + 

y+e+f!-) were calculated at lowest order in cr. The lepton fragmentation function was defined 

by imposing a cutoff on the invariant mass s of the lepton and 111 in the final state. This cutoff 

translated into limits on the phase space of the subprocess ?(Z” + y + !+!-). It was then 

explicitly shown that the p-dependence of the lepton fragmentation function canceled the 

p-dependence of the subprocess P(Z” + y + e+!-). Comparison between the fragmentation 

calculation and the full calculation shows that the fragmentation approximation is accurate 

to within 5% at E+ = ~M,J,, and becomes more accurate for 111 energies greater than this. 
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Energy Physics, under Grant DE-FG02-91-ER40684. I wish to thank E. Braaten for many 
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Figure Captions 

1. The Feynman diagrams for Z” + $+ @e- at leading order in cr. a) The two diagrams 

from which the fragmentation contribution can be isolated, and b) the two diagrams 

that may be neglected. 

2. The two Feynman diagrams for Z” + $7 at leading order in cr. 
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3. Feynaman diagrams for a) $J production by photon fragmentation, b) photon produc- 

tion. The shaded circle represents some general vertex that radiates the photon. 

4. The two Feynman diagrams for 2’ + y + P+e- at leading order in o. 

5. Feynman diagrams for a) $J production by lepton fragmentation, b) lepton production. 

The shaded circle represents some general vertex that radiates the lepton. 

6. Lepton fragmentation function for p = 3M+ (solid) and p = 6M+ (dashes). 

7. Energy distribution: the full calculation (solid), the fragmentation calculation (dashes). 

8. Photon fragmentation (PF) and lepton fragmentation (LF) contributions to the energy 

distribution for p = 3M+ (solid) and JJ= 6Mti (dashes). 
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